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A MARKOVIAN ANALYSIS OF MIGRATION DIFFERENTIALSI 

1. Introduction 

Andrei Rogers, University of California 

Over the past twenty years, quantitative models 
of internal migration have received considerable 
attention in the social sciences, particularly in 
the areas of sociology and demography. A vast 
amount of data have been collected, and numerous 
mathematical models have been proposed to account 
for apparent empirical regularities. These in- 
dicate that migration is a clearly patterned non- 
random phenomenon which is subject to scientific 
explanation and, therefore, perhaps ultimately 
may be forecast with a reasonable degree of 
accuracy. 

Internal migration may be approached from two 
different points of view: from the point of view 
of migration streams and from the point of view 
of migration differentials. These are not mutu- 

ally exclusive conceptualizations, but each con- 
centrates on a particular aspect of migration. 
Migration stream analysis focuses on the volume 
and direction of place -to -place movements. The 
analysis of migration differentials selects as its 
principal subject of inquiry the differences in 
the characteristics of migrants and nonmigrants 
and the differences between migrant sub -groups. 
Whereas the analysis of streams is concerned pri- 
marily with the effect that variations in environ- 
mental conditions at origins and destinations have 
on volumes of flow, the study of differentials is 
concerned with the traits of migrants in various 
age- sex - income -race classifications. Thus the 
problem shifts from that of accounting for changes 
in flow patterns to explaining in what respects 
migrants differ from the general population. In 
short, differential migration is concerned with 

the study of those migrant categories which have 
a disproportionately greater or smaller percentage 
of migrants than is found in the population as a 
whole. 

The definitive work on migration differentials 
continues to be that of Dorothy S. Thomas, whose 
exhaustive findings on this topic were published 
almost thirty years ago.2 Since that time sev- 
eral significant analyses of migration differ- 
entials have appeared. Bogue and Hagood, by 

cross -classifying stream characteristics, simul- 

taneously consider the joint effects of income, 
age, occupation, employment, marital status and 
education on migration.3 Beshers and Nishiura 
suggest a theory of internal migration differ - 
entials.4 The principal hypotheses which con- 
sistently reappear in these and other studies 
are: 

1. Young adults are the most mobile segment of 
the population. 

2. Males tend to be more migratory than females. 

3. Unemployed persons are more likely to move 
than employed persons. 

Whites move more than non -whites. 

5. Professionals are among the most mobile 
elements of the population. 

Paralleling the growing interest in quanti- 
tative analysis of migration phenomena has been 
the emergence of Markov chain theory as a method- 
ological tool for analyzing social, industrial and 
geographic mobility. Markov chains have been used 
to examine intergenerational mobility,5 to study 
the movement of workers between industries,6 and 
to project future population totals for Census 
Divisions in the United States.? By and large, 
however, the empirical results have been disap- 
pointing. What at first appeared as a powerful 
new technique for temporal analysis has been 
found to be generally inapplicable in much of so- 
ciological and demographic research. Fundamen- 
tally, the discouraging results stem from the 
restrictive assumption of unchanging movement 
probabilities. Such an assumption, of course, is 
unrealistic in light of our knowledge concerning 
mobility in general and interregional migration 
in particular. Transition probabilities vary over 
time as well as over space. Moreover they are de- 
pendent on differential socioeconomic, demographic 
and political situations at origins and desti- 
nations. Thus one may justifiably conclude that 
Markov chain analysis may be more useful in 
analyses of past migration flows and of very 
little practical use in efforts to forecast future 
place -to -place movements. However, though of 
limited utility in temporal analysis, it appears 
that Markovian concepts do provide useful indices 
for purposes of differential analysis. Thus de- 
spite its limited success in accounting for inter- 
regional migration streams, Markov chain theory 
does supply useful insights concerning the observed 
differential behavior of a population of migrant 
cohorts at a given point in time. 

This paper describes an investigation of mi- 
gration differentials in California. The data are 
the U.S. Census reported flows for the 1955-1960 
time period and supplementary estimates provided 
by a recent study complgted for the California 
State Development Plan. The method of analysis 
utilizes the Markovian concepts of transition 
matrices, mean first passage times and equilibrium 
distributions. 

2. Markovian Analysis of Migration Differentials 

Consider an interregional system of m regions 
and a population composed of n cohorts. Define a 
cohort as a group of persons who behave independ- 
ently but according to an identical migration 
structure. That is, assume that a member of 
cohort r behaves independently of all other mem- 
bers and according to an m by m transition matrix 
Pr. Then we may estimate each element of Pr by 
means of observed proportions taken over a cohort 
class, i.e., 



k. 

rPij 
(r = 1, 2, 

(i, j = 1, 2, 

j=1 

n) 

m) 

where = the number of people, who during a 
specified time period, moved from region i to 
region J. 

With cohort - specific data on migration propen- 
sities, we may begin to study the changes of 
state that a single individual is likely to under- 
go in light of the transition structure of his 
cohort class. More specifically, for each cohort, 
we may identify current movement characteristics 
and thereby establish a series of intra- cohort 
contrasts. Three properties of transition struc- 
tures serve as particularly useful indices: the 
cohort's transition matrix, the associated mean 
first passage time matrix and the equilibrium 
vector. 

Transition Matrices 

Cohort - specific transition matrices provide a 
great deal of information about the mobility of 
migrant classes. In particular, their diagonal 
elements provide an immediate dimension along 
which we may contrast the degree of overall mo- 
bility of different migrant groups. For example, 
consider a hypothetical system of only two re- 
gions, A and B, and a population divided into two 
broad cohort classes, white and non -white. Let 
us suppose that if an individual, in the white 
cohort class, is in region A there is a 50 per 
cent chance that he will move to region B during 
the unit time interval. If the person is cur- 
rently in region B, however, with probability 1/4 
he will move to A during the same time period. 
Assume, further, that for the non -white cohort 
class the corresponding probabilities are 1/4 and 
1/5. In matrix form we have then: 

A B A B 

A 1/2 1/2 A 3/4 1/4 

B 1/4 3/4 B 1/5 4/5 / 

Immediately we observe that the diagonal ele- 
ments of are greater than the corresponding 
entries in P. From this we may infer that non- 
whites are less mobile than whites. If our inter- 
regional system contained more than two regions, 
we would, in addition, be in a position to com- 
pare the relative "attraction" of alternate des- 
tinations for different migrant cohorts. 

First Passage Times 

Frequently it is desirable to 
of time that it takes an average 
move from state i to state j for 
The distribution describing this 
is called the first passage time 
Its mean is commonly referred to 
first passage time. 

study the length 
individual to 
the first time. 
random variable 
distribution. 
as the mean 
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Turning to our two -region example, consider the 
probability that an individual currently in region 
A will move to region B, for the first time, 
time periods. Denote this probability by g n 

and begin with n equal to 1. Then, 

(1) 

(2) 

and by substitution 

(2) (1) 

The above equations merely state than an indi- 
vidual's probability of going from A to B, for the 
first time, in one time period is (by defi- 
nition), and the probability of doing this in two 
steps is the product of the probability of remain- 
ing in A during the first time period and the 
probability of moving to B during the second time 
period. 

Extending the argument to the general case, for 
this two- region example, we have: 

(n) (n -l) 

(n-2) PPgAB 

-l 

This function is called the first passage time 
distribution. Since p = 1 - we have 

= - 
-1 

which is the geometric distribution with a mean 

This statistic is defined as the mean first 
passage time and represents the average number of 
time periods required for a person in region A to 
visit region B for the first time. The matrix M, 
consisting of entries m , is defined as the mean 
first passage time matri. 

Returning to our numerical example, we find 
for the white cohort: 

and 

(n) 
= (1/2) (1/2)n-1 
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In general, the mean first passage times of a 
Markov chain may be found by recursively applying 
the following equation:9 

mi pi piki 
k i 

Kemeny and Snell, however, offer a more convenient 
matrix formulation: 

M = (I - Z + 

where 

D = a diagonal matrix with elements dii 
= 

1 

E = a matrix with all elements equal to 1; 

I = the identity matrix; 

Z = the fundamental matrix; 

Zdg = the Z matrix with all off -diagonal 
entries set equal to O. 

The fundamental matrix, Z, is defined by the 
following equation: 

= (I - (P-A))-1 

where 

P = the matrix of transition probabilities; 

A = a matrix with each row identically equal 
to the equilibrium vector a. 

The computation of the matrix of mean first 
passage times may be illustrated by returning to 
our example: 

/1 

\o 

and 

71/2 -1 

3/4 1/3 2/3 

1/6 

1/12 11/12 

/ 11/9 -2/9 

\ -1/9 10/9 

0 1 -1/9 

u/9 
+ 

1 o 

2. 

3 2 
\ 

4 11/2) 

10/9 

o o 

10/9 O 1 1/2 

As a check, notice that is again equal to 

Repeating the above computation for the non- 
white cohort, we have: 

/ 2 1/4 \ 

\ 5 1 4/9 

Mean first passage times provide a measure of 
a particular kind of contiguity- -one based on 
interchange probabilities rather than distance. 
Thus they may be viewed as indices of aspatial 
interregional distance. Let us define this 
aspatial measure of proximity as "migrant dis- 
tance." 

With reference to our two- region, two- cohort 
example,we may make both an intra- cohort obser- 
vation and an inter - cohort contrast: 

(1) "Migrant distance" from region A to re- 
gion B, for both cohorts, is "shorter" than 
the distance from B to A. This asymmetry 
suggests that, on the basis of actual mi- 
grant exchange, B is "closer" to the popu- 
lation at A than A is to the population 
at B. 

(2) White "migrant distance" from region A to 
region B is "shorter" than non -white "mi- 
grant distance" between the same two 
regions. 

Equilibrium or Limiting State Probabilities 

The transition matrix P provides a great deal 

of information about the Markov process described 

above. For example, it allows us to derive the 

probability that an individual currently residing 
in region A will be in region B after 2 years. 
This "event" can occur only in one of two mutually 
exclusive and collectively exhaustive ways: 

(1) the individual remains in A during the 
first year and migrates to B during the 



second year; 

(2) the individual migrates to B during the 
first year and remains in B during the 
second year. 

Therefore, for the white cohort, 

(2) + 

= (1/2)(1/2) + (1/2)(3/4) 

= 5/8 

With analogous arguments we find: 

(2) 
= (1/2)(1/2) 

(2) 
= (1/4)(1/2) 

pß(2) 
(1/4)(1/2) 

+ (1/2)(1/4) 

+ (3/4)(1/4) 

+ (3/4)(3/4) 

= 

= 

3/8, 

5/16, 

11/16. 

These numbers can be presented in a matrix: 

PW(2) 

A B 

/ 5/8 38 58 

B 5/16 11/16 

The matrix P(2) describes wyement between two 
periods of time. Similarly describes move- 
ment during n time periods. It should now become 
apparent that the transition matrix P, in a 
Markov model, completely determines the character 
of the migration process. Therefore, it is pos- 
sible to use this short term data to compare the 
movement patterns of different classes of indi- 
viduals, to project these into the future, and to 
assess what are the intrinsic distributional con- 
sequences of a particular movement structure. 

The essential feature of representing Markov 
processes by transition matrices stems from the 
ease with which nth order transition probabilities 
may be derived by matrix multiplication. In par- 
ticular, the multiplication of the transition 
probability matrix P by itself, n number of times, 
yields the nth -order transition probabilities. 
For example, it can be shown that: 

and, in general, 

P(2) P2 

P(n) 

This can be demonstrated by our example: 
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PW 

1/4 

1/2 

3/4 

.50 

.25 

.50 

.38 .62 

.31 .69 

.34 .66 

.33 .67 

.33 .67 1/3 2/3 

P5 

.33 .67 1/3 2/3 

Similarly, for the non -white cohort: 

P 
8 

4/9 5/9 

5/9 

An interesting and very important feature of a 
class of Markov processes, defined as "ergodic" 
chains, is illustrated by the above matrices. It 

will be noted that initially the transition proba- 
bilities are different for each of the two states. 
That is, a migrant's destination is heavily in- 

fluenced by his place of origin. However, after n 
powers of the transition matrix are calculated, it 
becomes apparent that the effect of the starting 
state diminishes. For example, for the white co- 
hort this occurs when n is equal to 5. For this 
and larger values of n, the rows of the transition 
matrix are identical. This means that as n in- 
creases, pin), the probability of migrating from i 
to j in n Oars, approaches a limit pi which is 
independent of i. At this point the system is said 
to be in "equilibrium" or to have reached a "steady 

state." 

Comparing the equilibrium vectors of the white 
and non -white cohorts in our example suggests 
something of the long -term implications of current 
behavior. It is an abstract index, to be sure, 
since "death" is not included as a possible end - 
state. Nevertheless, the steady state vector may 
be viewed as a kind of "speedometer" which de- 
scribes the ultimate consequences of the current 
movement pattern if it remains unchanged. Instead 
of assuming that the driver doesn't die and that 
his car continues at exactly the same speed, we 
assume that the migrant doesn't die and that the 
transition probabilities remain constant. 

In our example, we note that on the basis of 
current trends it appears that the white cohort 
is favoring region B as a destination. A similar 
observation may be made with respect to the non- 
white cohort. 
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3. Migration Differentials in California: 
Some Empirical Results 

According to the Census of 1960, over 2.1 
million persons migrated to California between 

1955 and 1960 while slightly under a million de- 
parted, thus producing a net increase of some 1.2 
million people over the five -year period.10 Ori- 
gins and destinations for these migrants, by 19 
State Economic Areas, have been publishedll and 
total age- and color- specific intrastate flows 
and transition matrices have been estimated.12 
For ease of exposition, however, we shall struc- 
ture the discussion around selected matrices of a 
smaller order. In particular, we shall focus on 
the reduced versions which are exhibited in 
Tables 1 through 6.13 

Transition Matrices 

Several interesting findings are suggested by 
the transition matrices. These are by no means 
surprising and, indeed, merely support relatively 
well- established demographic hypotheses. 

First, it is clear that the transition proba- 
bilities have not remained constant over time. 
The population has become much more mobile both 
at the interstate and the intrastate levels. 
Second, there are significant differences between 
the characteristics of white and non -white flow 
patterns. Non -white probabilities are consider- 
ably higher than white probabilities in urban to 
urban transfers and much lower in urban to sub- 
urban-rural movements. Finally, considerable dif- 
ferences appear to exist between the migration 
structures of various age groups. The most mobile 
age groups are the 15 to 19 and 20 to 24 age 
groups; the least mobile are the post -65 -year age 
groups. 

Temporal Differentials: The transition matrix 
for California SEA's has changed considerably 
over time. This is immediately apparent from even 
the most cursory examination of Table 1. In 
every instance the diagonal element of the 1935- 
1940 matrix is larger than the corresponding 
diagonal element of the 1955 -1960 matrix. This 
points to the greater mobility of today's popu- 
lation. For example, for the 1935 -1940 cohort, 
the probability that a member of the San Francisco - 
Oakland population moves out of that SMSA is less 
than .09. The corresponding figure for the 1955- 
1960 time interval is almost .15. The change for 
other SEA's is less striking, but is significant 
nevertheless. 

Color Differentials: Two major points should 
be noted concerning the white and non -white tran- 
sition matrices presented in Tables 2 and 6. 

First, the data clearly show that, on the whole, 
whites are more mobile than non -whites. Every 
diagonal element of the non -white matrix in Table 
2 is larger than the corresponding element of the 
white matrix. For example, the probability that 
an individual of the non -white cohort in the Los 
Angeles -Long Beach SMSA moves out of that sub- 

region during the 1955-1960 period is less than 

0.6. The corresponding figure for whites is 
exactly twice that number. 

The second finding concerns rural to urban 
transfers. Non -white movements are primarily 
urban to urban migrations. Non -white probabilities 
are relatively higher than white probabilities in 
SMSA to SMSA movements, but are much lower in SMSA 
to non -SMSA transfers. 

Differentials: Tables 3, 4, and 5 high- 
light the age- specific mobility pattern which 
emerges out of an analysis of the transition 
matrices of the 17 age cohorts in California. 
Although considerable differences exist between 
individual SEA's, the overall distribution is un- 
mistakable. The probability of leaving an SEA is 
highest for the 15- to 19- and 20- to 24 -year age 
groups and lowest for the post -65 -year age groups. 
The distribution is unimodal and resembles the 
Gamma distribution. The high values are distri- 
buted around .40 with the low values approaching 
zero. The maximum is attained by the South Central 
Coast SEA. Here the probability that an indivi- 
dual in the 15- to 19 -year age group moves out of 
this SEA is almost .44. 

Mean First Passage Times 

Tables 7, 8, and 9 present mean first passage 
time matrices for six of the eight transition 
matrices appearing in Tables 1, 2, 4, and 5. The 
actual values of these "migrant distances" are 
quite meaningless; however, when considered in 
relative terms, they suggest several interesting 
findings concerning spatial and aspatial conti- 
guities among California's major SMSA's. 

A quick glance at the 1935 -1940 and 1955 -1960 
mean first passage time matrices reveals changes 
both in intra- and inter -matrix levels. On the 
whole, it is clear that migrant distances de- 
clined over the twenty -year period --a reflection 
of increased geographical mobility. Other changes, 
however, are equally noteworthy. Perhaps the most 
noticeable is the shortening of migrant distances 
in relation to the distance between the Los 
Angeles -Long Beach and San Francisco - Oakland SMSA's. 
For example, whereas during the 1935-1940 period 
the migrant distance from Los Angeles to San Jose 
was over four times that of the migrant distance 
between Los Angeles and San Francisco, in 1955- 
1960 this ratio declined to two to one. 

Differences both within and between the white 
and non -white mean first passage time matrices are 
quite apparent. Particularly striking are the non- 
white migrant distances to the San Jose SMSA. The 
non -white migrant distance between the San Francisco 
Oakland and the San Jose SMSA's, for example, is 
nine times the reverse distance and thirteen times 
the distance between the San Francisco and Los 
Angeles SMSA's. This probably is a reflection of 
the racial discrimination in San Jose's housing 
market. 

The mean first passage time matrices for the 20- 
to 24- and 65- to 69 -year age groups differ consid- 
erably in absolute values but are very similar in 



relative terms. This is an indication that, 
although the former age group is much more mobile 
than the latter age group, their movement patterns 
are quite similar. For example, in both matrices 
the distance from San Jose to Sacramento is three 
times that of the reverse distance. 

Finally, it is interesting to note the total 
absence of any significant correlation between 
interregional highway - mileage distances (Table 10) 
and interregional migrant distances as measured 
by mean first passage times. Table 11 presents 
the correlations between each of the mean first 
passage time matrices in Tables 7, 8, and 9 and 
the interregional distances shown in Table 10. 
Clearly the spatial and aspatial measures of 
interregional distances are totally unrelated. 

Equilibrium Distributions 

The migration differentials revealed by the 
transition matrices in Tables 1, 2, 3, 4, 5, and 
6 are readily recognizable. Differences in the 
propensity to move are immediately apparent. Not 
so obvious perhaps, are the implied distributional 
consequences of the various transition structures. 
For example, a comparison of the equilibrium vec- 
tors of the 1935-1940 and the 1955 -1960 transition 
matrices suggests that California's share of the 
national population is going to taper off at a 
lower level than indicated by pre -World War II 
trends. This is not immediately apparent from a 
consideration of the transition matrices alone. 

At more disaggregated levels, the equilibrium 
solutions present a detailed, quantitative picture 
of the spatial implications of current mobility 
trends. Moreover, they provide indications of 
temporal changes and of differentials between 
migrant sub -classes. 

Temporal Differentials: The temporal changes 
in the values of the equilibrium vectors for Cali- 
fornia's population have little meaning other than 
as an index of the direction of changes in regional 
preferences over time. Perhaps the most signifi- 
cant finding in Table 1 is the decline in the 
equilibrium probabilities of the San Francisco- 
Oakland and Los Angeles -Long Beach SMSA's. This, 

however, is not an unexpected trend, especially 
when viewed against the increasing equilibrium 
probabilities of the San Jose, Sacramento and 

San Diego SMSA's. 

Color Differentials: The most striking finding 
arising out of the equilibrium vectors in Table 2 
is the overwhelming expected concentration of non- 
whites in the Los Angeles and San Francisco re- 
gions. Of the projected non -white share for 
California, well over half are expected to settle 
in the Los Angeles -Long Beach SMSA and about a 
fifth should locate in the San Francisco -Oakland 
SMSA. This is in marked contrast to the white 
equilibrium vector. The latter exhibits a rela- 
tively more uniform distribution, though it too 
shows a significant concentration in the Los 
Angeles subregion. 
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Differentials: Despite considerable dif- 
ferences between age- specific transition matrices, 
the equilibrium vectors of the six age groups 
analyzed in Tables 3, 4, and 5 are, on the whole, 
quite similar. The major difference appears in 
the California -Rest of the U.S. probability allo- 
cation. Thus, for example, whereas for the 20- to 
24 -year age group this division is .193 -.807, for 
the 65- to 69 -year age group the corresponding 
split is .138 -.862. Among the five SMSA's, how- 
ever, the vector does not vary substantially be- 
tween age groups. 

4. Conclusion 

This paper has borrowed concepts from Markov 
chain theory to identify and analyze migration 
differentials. Transition matrices were used to 
establish the movement propensities of each mi- 
grant cohort. Mean first passage times defined 
aspatial measures of interregional "migrant dis- 
tance." Finally, equilibrium distributions pointed 
to the distributional tendencies of different 
classes of migrants. 

The basic Markovian model is conceptually simple 
and rests on very strict assumptions concerning 
human behavior. Because of this, it is an analytic 
system which shows only limited promise as a tool 
for long -term forecasting of interregional flows. 
However, as a technique for analyzing differential 
behavior during an observed period, it appears to 
provide insights which are not readily obtainable 
by other means. 
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TABLE 1. TRANSITION MATRICES AND EQUILIBRIUM DISTRIBUTIONS FOR CALIFORNIA: 
BY TIME PERIOD.* 

A. 1935 -1940 Total Flows 

G CAL. U.S. A 

A .9139 .0067 .0615 .0022 .0293 .0265 
B .0575 .8529 .0056 .0121 .0034 0459 .0226 

.0379 .0030 .8434 .0125 .0019 .0741 .0272 

F .0096 .0012 .0013 .9215 .0058 .0242 .0364 
G .0147 .0014 .0043 .0498 .8371 .0208 .0719 
CAL. .0280 .0059 .0086 .0031 .8912 .0288 

U.S. .0009 .0001 .0001 .0033 .0004 .0020 .9932 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0387 .0050 .0053 .0688 .0065 .0479 .8279) 

B. 1955 -1960 Total Flows 

A G CAL. U.S. 

A .8543 .0203 .0070 .0172 .0053 .0363 .0596\ 
B .0460 .8271 .0053 .0155 .0043 .0465 .0553 

.0247 .0061 .8165 .0142 .0034 .0667 .0684 

F .0076 .0043 .0030 .8907 .0078 .0324 .0542 

G .0120 .0046 .0019 .0371 .7923 .0255 .1266 

CAL. .0209 .0099 .0109 .0327 .0078 .8538 .0640 

U.S. .0017 .0006 .0004 .0056 .0016 .0028 .9873/ 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0253 .0107 .0070 .0667 .0116 .0456 .8331) 

*A = S.F. - Oakland C = Sacramento G = San Diego U.S. = Rest of 

B = San Jose F = Los Angeles Cal. = Rest of the U.S. 
California 
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TARTE 2. TRANSITION MATRICES AND EQUILIBRIUM DISTRIBUTIONS FOR CALIFORNIA: 
BY COLOR 

A. 1955 -1960 White Flows 

G CAL. U.S. A 

A .8465 .0221 .0073 .0172 .0056 .0388 .0625 
.0453 .8269 .0053 .0154 .0044 .0465 .0562 
.0247 .0063 .8118 .0141 .0035 .0689 .0707 

F .0077 .0046 .0032 .8863 .0082 .0339 .0561 
G .0117 .0048 .0019 .0367 .7897 .0260 .1292 
CAL. .0208 .0102 .0110 .0326 .0080 .8526 .0648 

.0018 .0004 .0058 .0017 .0030 .9867 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0249 .0112 .0071 .0661 .0121 .0477 .8309) 

B. 1955 -1960 Non -white Flows 

A G CAL. U.S. 

A .9174 .0059 .0044 .0026 .0162 .03641 

B .0660 .8341 .0052 .0190 .0027 .0439 .0291 
C .0245 .0031 .8792 .0156 .0016 .0376 .0384 

.0062 .0009 .0011 .9437 .0030 .0143 .0308 

G .0166 .0011 .0012 .0444 .8425 .0182 .0760 

CAL. .0234 .0048 .0095 .0356 .0058 .8728 .0481 

U.S. .0016 .0001 .0002 .0045 .0011 .9918, 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0371 .0033 .0060 .1023 .0073 .0273 .8167) 
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TABLE 3. TRANSITION MATRICES AND EQUILIBRIUM DISTRIBUTIONS FOR CALIFORNIA: 
BY AGE GROUP 

A. 1955 -1960 Flows for Group #2: 5 to 2 years 

CAL. U.S. A G 

A .8458 .0215 .0074 .0182 .0056 .0384 .0631 

B .0469 .8238 .0158 .0044 .0473 .0564 

c .0256 .0063 .8101 .0147 .0035 .0690 .0708 

F .0081 .0046 .0032 .8834 .0083 .0346 .0578 
G .0116 .0045 .0018 .0358 .7997 .0245 .1221 

CAL. .0215 .0101 .0113 .0338 .0081 .8497 .0655 
U.S. .0016 .0005 .0004 .0050 .0014 .0025 .9886 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0223 .0095 .0064 .0573 .0109 .0408 .8527) 

B. 

A 

6 Flows for Group #4: 15 to years 

CAL. U.S. G 

A .6952 .0424 .0146 .0359 .0111 .0761 .12471 

B .0740 .7221 .0086 .0250 .0069 .0745 .0889 

.0433 .0107 .6782 .0249 .0059 .1170 .1200 
F .0142 .0081 .0057 .7952 .0146 .0607 .1015 

G .0223 .0086 .0035 .0690 .6136 .0+75 .2355 
CAL. .0334 .0167 .0168 .0518 .0123 .7668 .1022 

U.S. .0033 .0011 .0008 .0106 .0030 .0052 .9760 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0228 .0125 .0075 .0666 .0116 .0533 .8255) 
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TABLE 4. TRANSITION MATRICES AND EQUILIBRIUM DISTRIBUTIONS FOR CALIFORNIA: 
BY AGE GROUP 

A. 1955 -1960 Flows for Group #5: 20 to 24 years 

CAL. U.S. A B C F G 

A .7288 .0377 .0130 .0320 .0099 .0676 .1110 
B .0710 .7332 .0082 .0240 .0067 .0715 .0854 
C .0445 .0110 .6693 .0256 .0061 .1202 .1233 
F .0138 .0079 .0056 .8006 .0142 .0590 
G .0204 .0079 .0032 .0630 .6468 .0435 .2152 
CAL. .0324 .0161 .0164 .0531 .0271 .7668 .1025 
U.S. .0036 .0012 .0009 .0116 .0033 .0057 .9737 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0272 .0138 .0078 .0735 .0137 .0570 .8070) 

B. 1955 -1960 Flows for Group #8: 35 to aclyears 

CAL. U.S. A G 

A .8825 .0163 .0056 .0138 .0043 .0294 .0481 
B .0391 .8531 .0045 .0132 .0037 .0394 .0470 

C .0215 .0053 .8403 .0124 .0029 .0581 .0595 
F .0063 .0036 .0025 .9097 .0064 .0267 .0448 
G .0087 .0033 .0013 .0268 .8497 .0186 .0916 
CAL. .0186 .0086 .0099 .0291 .0069 .8701 .o568 

.0016 .0005 .0004 .0050 .0014 .0025 .9886 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0283 .0109 .0074 .0713 .0140 .0455 .8226) 
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TABLE 5. TRANSITION MATRICES AND DISTRIBUTIONS FOR CALIFGRNIA: 
BY AGE GROUP 

A. 1955 -1960 Flows for Group #11: 50 to years 

CAL. U.S. A B G 

A 9293 .0098 .0034 .0083 .0026 .0177 .0289 
B .0256 .9038 .0030 .0086 .0024 .0258 .0308 
C .0130 .0032 .9034 .0075 .0018 .0351 .0360 
F .0043 .0025 .0017 .9378 .0044 .0185 .0308 

G .0053 .0020 .0008 .0163 .9090 .0111 .0555 
CAL. .0137 .0062 .0074 .0205 .0050 .9062 .0410 
U.S. .0008 .0003 .0002 .0026 .0007 .0013 .9941 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0252 .0094 .0067 .0557 .0123 .0341 .8566) 

B. 1955 -1960 Flows for Group #14: 65 to rears 

A G CAL. U.S. 

A .9383 .0086 .0030 .0073 .0023 .0152 .0253 
B .0228 .9145 .0027 .0077 .0021 .0228 .0274 

.0108 .0026 .9195 .0063 .0015 .0292 .0301 
F .0038 .0022 .0015 .9456 .0039 .0160 .0270 
G .00146 .0018 .0007 .0142 .0097 .0484 

CAL. .0116 .0052 .0060 .0175 .00+2 .9206 .0349 

U.S. .0007 .0002 .0002 .0021 .0006 .0011 .9951 

Equilibrium Vector: 

A B C F G CAL. U.S. 

a = (.0245 .0083 .0069 .0525 .0119 .0336 .8622) 
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TABLE 6. TRANSITION MATRICES AND EQUILIBRIUM DISTRIBUTIONS FOR CALIFORNIA: 
BY SMSA AND NON -SMSA FLOWS 

A. 

S. 

Total Flows 

1955 -1960 

N.S. U.S. 

B. 

S. 

White Flows 

1955 -1960 

N.S. U.S. 

C. Non -white Flows 
1955 -1960 

S. N.S. U.S. 

/.9167 .0211 .0622, /.9135 .0221 .0644 SMSA .9556 .0085 .0359\ 

NON- NON- NON - 
.1120 .8218 .0662 .1121 .8214 .0665 .1101 .8326 .0573 

U.S. .0114 .0013 .9873/ U.S. `.0119 .0014 .9867/ U.S. .0077 .0005 .9918/ 

Equilibrium Vector: 

S. N.S. U.S. S. N.S. U.S. S. N.S. U.S. 

a = (.1451 .0232 .8317) a = (.1459 .0246 .8295) a = (.1695 .0111 .8194) 

D. Flows for 15 -19 E. Flows for 35 -39 F. Flows for 50-54 
Age Group Age Group Age Group 

1955 -1960 1955 -1960 1955 -1960 

S. N.S. U.S. S. N.S. U.S. S. N.S. U.S. 

.8422 .0391 .1187\ .9319 .0175 .o506\ 0554 .0114 .0332\ 

NON- NON- NON- 
.1788 .7150 .1062 .0995 .8416 .0589 .0708 .8873 .0419 

U.S. .0215 .0025 .9760/ U.S. .0102 .0012 .9886/ U.S. \.0053 .0006 .9941/ 

Equilibrium Vector: 

S. N.S. U.S. S. N.S. U.S. S. N.S. U.S. 

a = (.1436 .0270 .8294) a = (.1571 .0236 .8193) a = (.1293 .0176 .8530) 

TABLE 7. MEAN FIRST PASSAGE TIMES: BY TIME PERIOD 

A. 1935 -1940 Total Flows 

F G CAL. U.S. A B C 

A 25.8 1304.2 1174.6 145.0 915.1 146.5 33.3, 
B 179.0 200.0 1161.7 145.5 915.0 127.2 34.1 
C 215.8 1339.2 188.7 144.4 913.5 106.1 33.0 
F 291.9 1400.9 1239.8 14.5 889.8 171.0 29.5 
G 301.7 1416.0 1237.1 136.2 153.8 192.1 23.4 
CAL. 238.1 1329.2 1154.7 128.6 898.8 20.9 32.2 
U.S. 382.1 1492.7 1333.5 216.4 990.3 264.1 1.2, 

B. 1955 -1960 Total Flows 

A G CAL. U.S. 

A 39.5 485.2 749.8 119.3 398.0 118.1 16.3 
B 204.9 93.5 753.8 119.4 399.3 110.6 16.6 
C 238.0. 530.2 142.9 120.8 402.2 102.1 15.4 
F 264.1 541.2 771.3 15.0 389.0 121.3 16.8 
G 271.5 554.3 791.3 116.1 86.2 143.1 11.2 
CAL. 243.4 521.9 737.6 109.8 392.4 21.9 15.8 
U.s. 300.1 583.8 817.2 143.0 421.7 174.5 1.2 
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TABLE 8. MEAN FIRST PASSAGE TIMES: BY COLOR 

A. 1955 -1960 White Flows 

G CAL. U.S. A B C 

A 40.2 460.5 720.6 116.4 376.6 111.2 15.7 
B 199.4 89.3 725.0 116.4 378.0 105.1 16.2 
C 230.8 505.9 140.8 117.8 380.8 96.6 15.0 
F 255.2 515.8 740.7 15.1 367.9 114.5 16.3 
G 262.7 529.1 760.8 113.2 82.6 135.6 10.9 
CAL. 235.6 497.5 709.0 107.0 371.3 21.0 15.4 
U.S. 289.1 557.6 785.4 138.4 399.0 165.1 1.2 

B. 1955-1960 Non -white Flows 

G CAL. U.S. A 

A 27.0 1762.5 1335.1 135.9 846.2 248.0 27.1\ 

B 190.1 303.0 1319.7 130.2 841.2 204.0 27.9 
C 257.2 1810.4 166.7 136.0 851.1 207.8 26.3 
F 309.6 1866.5 1388.2 9.8 838.8 252.4 29.1 
G 303.5 1876.0 1400.6 123.7 137.0 270.4 20.7 
CAL. 272.0 1808.0 1305.8 121.8 830.2 36.6 25.0 
U.S. 363.0 1937.6 1455.0 180.3 890.0 339.3 1.2 

TABLE 9. MEAN FIRST PASSAGE TIMES: BY AGE GROUP 

A. 1955 -1960 Flows for Group #5: 20 to 24 years 

CAL. U.S. A B C F G 

A 36.8 243.3 373.2 59.3 198.3 58.7 9.2 
B 103.1 72.5 375.9 59.9 199.5 55.6 10.0 

119.1 265.8 128.2 60.1 200.5 50.8 8.9 
F 132.0 271.3 383.7 13.6 193.9 60.4 9.6 
G 135.3 277.7 393.3 57.6 73.0 71.0 6.5 
CAL. 122.5 261.9 368.8 54.8 195.8 17.5 9.4 
U.S. 148.5 291.7 404.8 70.0 209.1 85.9 1.2 

B. 1955 -1960 Flows for Group #14: 65 to 69 years 

CAL. U.S. A G 

A 4o.8 1267.0 1733.8 307.3 1011.1 298.7 35.3 
B 497.2 120.5 1740.3 305.3 1013.4 277.8 34.2 

580.2 1385.6 145.0 310.5 1022.2 257.7 32.8 
F 641.0 1408.7 1781.9 19.0 986.1 303.6 34.2 
G 664.6 1448.9 1833.5 301.8 84.o 363.0 25.7 
CAL. 589.2 1361.9 1702.0 280.9 995.2 29.8 31.4 
U.S. 736.6 1529.5 1893.7 373.0 1078.2 443.2 1.2 
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A 

TARTY 10. 

B C 

INTERREGIONAL DISTANCES* 

F G CAL. U.S. 

A 48 89 403 522 -- 
48 125 366 485 -- 
89 125 383 502 -- 
403 366 383 -- 120 

G 522 485 502 120 
CAL. 

U.S. -- 

* 
County seat to county seat highway mileages. 

TABLE 11. CORRELATIONS BETWEEN INTERREGIONAL MEAN 
INTERREGIONAL DISTANCES* 

Temporal: 

FIRST PASSAGE TIMES AND 

R 

1935 -1940 matrix .024 

1955 -1960 matrix -.012 

Color: 

White -.015 
Non -white -.047 

Age: 

20- to 24 -year age group -.014 
65- to 69 -year age group -.005 

* 
Computed on the basis of twenty observations. 


